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In  considering the onset of instability of an electrically conducting fluid be- 
tween rotating permeable perfectly conducting cylinders in an applied axial 
magnetic field, it is found that oscillatory axially symmetric modes occur at  
large values of Hartmann number, in addition to the usual stationary modes. 
Results are presented showing the effect of the oscillatory modes on the criterion 
of onset of instability. 

The asymptotic behaviour of the stability criterion is considered in the limit 
of very large radial Reynolds number, and also in the limit where both the 
radial Reynolds number and the Hartmann number are large. 

1. Introduction 
In  part 1 of this paper (Chang & Sartory 1967a), the stability of the flow of 

an electrically conducting fluid between perfectly conducting rotating permeable 
cylinders under the influence of an axial magnetic field was considered for 
stationary or nonoscillatory axisymmetric critical modes. It is now known, 
however, from earlier work by the authors (1967 b)  on the stability of hydromag- 
netic Couette flow between non-permeable perfectly conducting cylinders, that 
oscillatory axisymmetric critical modes are also possible for sufficiently high 
values of the applied magnetic field or Hartmann number. It was therefore ex- 
pected that oscillatory modes would also occur under certain conditions for flow 
between permeable cylinders. In the present work, the occurrence of oscillatory 
modes and their effect on the onset of instability of flow between permeable 
cylinders is considered. 

Because of the large number of parameters influencing the stability of the 
type of flow considered in this work, it  is difficult to cover a wide range of values 
of all of the parameters. One useful method of extending the range of the results 
is to derive simplified asymptotic or limiting forms of the stability equations. 
The solutions of the asymptotic forms of the equations are considered for both 
stationary and oscillatory critical modes. 
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2. Finite IB,I theory 
2.1. Formulation of the oscillatory mode problem 

As discussed in part 1, we make the approximations that the magnetic Prandtl 
number, P,, and its product with the magnitude of the radial Reynolds number, 
P,I R,I , are both small. The stationary solution of the basic hydromagnetic 
equations under consideration is 

(2.1) 1 (u, v, w )  = [N’/r ,  L‘/r+ 2M’rRr+l/(Rr+ 2 ) ,  01, 

(B,) Bo, BJ = (0,0, Bo), 
P,, (magnetic Prandtl number) = p,,crv, 
R, (radial Reynolds number) = N’/v ,  

where 

(u, v, w), (B,, B,, B,) are the cylindrical components of the velocity and the 
magnetic induction field, respectively; r is the radial co-ordinate, v is the kine- 
matic viscosity, p0 is the magnetic permeability, cr is the electrical conductivity, 
L’, M’, N’ are constants, B, is the applied magnetic field and the rationalized 
MKS system of units is used. The fluid is assumed to be bounded by concentric 
permeable perfectly conducting cylinders. 

Under the above approximations, the linearized stability equations for the 
flow (2.1) with respect to small amplitude oscillatory modes with time, t ,  and 
axial, z, dependence of the form exp (ipt + ikz )  reduce to 

where 

2 = r/r2, D = d/dx, D, = D 1/x, 

v2 ’ T (Taylor number) = - 4L’M ’ rp7+2 

QZ (Hartmann number)? = cBir i / (vp) ,  
2 M ’ $r+Z A =  - -  
L’( R,T@ ’ 

V, is a characteristic speed, pis the fluid density, r2 is the radius of the outer cylin- 
der, and ur,  Bi are the amplitudes of the radial r-component of the velocity 
perturbation and the transverse 8-component of the magnetic induction vector 
perturbation, respectively. 

-f In this paper we refer to the various quantities denoted by Q as HaTtmann numbers, 
although Q actually has the form of the square of the usual Hartmann number. 
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The boundary conditions for perfectly conducting walls are 

Wl = OW, = D+W, = (DD+-/3;)W4 = 0 a t  x = K ,  1.0, (2.3) 
where K = r l / rz ,  and r,  is the inner cylinder radius. 

The neutral Taylor number is a value dependent on Pz for which (2.2) and (2.3) 
have a solution with Im(a,) = 0. The critical Taylor number is the minimum 
value of the neutral Taylor number for all values of ,LIZ. 

It was shown in part lt that the curves of critical Taylor number and wave- 
number for all values of radius ratio and Hartmann number approach a common 
asymptote as (R,[ -+a provided appropriate definitions of the parameters are 
adopted for inward and outward radial flow. For inward flow, we put 

Tl = ( -u!2),r$/v2, PI = krl, Q1 = aB$r;/(vp), a, = pr!/v; (2.4) 

and for outward flow, 

Tz = ( -uQ),rb/vz, P2 = kr2, Qz = aB:rE/(vp), a2 = prilv, (2.5) 

where (-oQ), = max ( - w Q ) ,  
rlQr<rz 

with Q(r)  = v/r ,  w(r) = 2(dv/dr+u/r). 12.7) 

2.2. Finite IR,I results 

Equations (2.2) and (2.3) have been solved numerically using methods described 
in Chang & Sartory (19676) and in part 1.  

I n  part 1,  it was found that at large values of the Hartmann number dis- 
continuities in the critical wave-number occurred a t  certain values of the para- 
meters. The discontinuities were found to be caused by shifts in the minimum 
between loops of the neutral Taylor number versus wave-number diagram. I n  
the solid curves of figure 1, we reproduce a stationary mode neutral diagram 
showing several loops with competing minima. If the value of Q2 were reduced 
continuously to zero, the right-most loop of figure 1 would map into a pair of 
nested U-shaped curves representing the two lowest normal modes. Under the 
conditions of figure 1, there is no Taylor number a t  which either of the two lowest 
modes can be made stationary for wave-numbers less than about 60. The dashed 
curve in figure 1 shows the effect of admitting oscillatory as well as stationary 
neutral modes. It represents a complex conjugate pair of oscillatory modes, and 
extends the neutral curve for the two lowest modes across the entire range of the 
wave-numbers. Similar extensions exist also for the partial loops representing 
higher pairs of modes, although the corresponding curves have not been calcula- 
ted. The oscillatory portion of the neutral curve for the two lowest modes ex- 
tends about an order of magnitude below the stationary mode curves, and de- 
termines the minimum or critical value of the Taylor number for the onset of 
instability. 

Having established that oscillatory critical modes must be admitted to obtain 
the correct critical values, we now consider the effect of such modes on the results 

f There were a few misprints in part 1. The symbols of the abscissas and ordinates 
should be interchanged and Bl. should be p,, in figures 1-4 and 6,u should he divided by 
(R ,+2)  in (2.1), and H a  should be Q2 in (2.12). 
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presented in part 1. Oscillatory modes do not occur for Hartmann numbers of 
100 or less, so that we can restrict our attention to the higher values considered 
in part 1. 

Figures 2-4 present the critical values of the Taylor number, wave-number, 
and frequency Re (a2)  as a function of the radial Reynolds number for Q2 = lo3, 
a non-rotating outer cylinder, and outward radial flow. Results are shown for 
K = 0.25 and 0.4. The third curve on each graph presents results of the asymp- 
totic theory which will be discussed later. The discontinuities in figures 3 and 4 

2-0 x los 

1.0 x lo8 

FIGURE 1.  Neutral Taylor number versus wave-number for A = - 1.0, QZ = 104, K = 0.25, 
R, = 2.5. -, stationary modes; ---, oscillatory modes. 

represent transitions between oscillatory and stationary critical modes. In the 
interval between the discontinuities the critical modes are oscillatory as indi- 
cated by the non-zero frequency of figure 4. Outside of the interval the modes 
are stationary and the results reduce to those given in part 1.  

The first transition from stationary to oscillatory modes is believed to be 
caused by changes in the shape of the primary transverse velocity profile pro- 
duced by outward radial flow which favour the oscillatory modes. At high values 
of the radial Reynolds number the disturbance becomes confined to a boundary 
layer on the outer cylinder, and the Hartmann number based on the boundary- 
layer thickness eventually becomes too small to maintain oscillatory modes, so 
that a transition back to stationary modes results. 

Figures 5-7 present results for the same conditions as above except that 
Q2 = lo4. The oscillatory modes now extend downward to R, = 0,  and the h a 1  
transition to stationary modes is displaced to the right. 
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FIGURE 2. 
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FIGURE 3. Critical wave-number versus radial Reynolds number for h = - 1.0, Qa = lo3. 
(a) K = 0.25; (b )  K = 0.4; (c) \R,\ + m asymptotic results. 
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FIGURE 4. Q~ = 103. 

FIGURE 5. 
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FIGURE 6. 
Rr 

Critical wave-number versus radial Reynolds number for h = - 1-0, 
(a) K = 0-25; (b)  K = 0.4; ( 0 )  lRrl + co asymptotic results. 

Q~ = 104. 

104 

lo3 

“a 

102 

10‘ 

Rr 
FIGTJFCE 7. Critical frequency versus radial Reynolds number for h = -1.0, Qr = lo4. 

(a) K = 0.25; (b )  K = 0.4; (c) lRrl + co aaymptotic results. 
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10-1 loo 10’ 

- R, 
lo2 

FJGURE 8. Critical Taylor number versus radial Reynolds number for h = - 1.0, Q1 = 103. 
(a)  K = 0.25; ( b )  K = 0.4; ( c )  lRrl -+ a, asymptotic results. 

-Rr 
FIQURE 9. Critical wave-number versus radial Reynolds number for h = - 1.0, Q1 = 103. 

(a)  K = 0.25; (a) K = 0.4; ( c )  lRrl --f 03 asymptotic results. 
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Figures 8-10 present results for Q1 = lo3 and a non-rotating outer cylinder; 
but for inward radial flow, R, < 0. Here oscillatory modes are present down to 
R, = 0. The very early transition back to stationary modes, R, z - 1.05, is 
believed to occur because the changes in the shape of the primary transverse 
velocity profile produced by inward radial flow favour stationary modes. No 
appreciable boundary-layer effects exist at such a low radial Reynolds number. 

lo-' 100 

- R,  
10' 

FIGURE 10. Critical frequency versus radial Reynolds number for h = -1.0, Q1 = 103. 
(a)  K = 0.25; ( b )  K = 0.4. 

In  part 1, results for a radius ratio of 0.8 were considered in addition to the 
values 0-4 and 0.25 used here. Results for K = 0.8 have not been included here 
because oscillatory modes do not occur for the range of the other parameters 
chosen. It should not be inferred that narrow gap widths inhibit the formation 
of oscillatory modes. On the contrary, it is known for the case R, = 0 that 
oscillatory modes begin to form for K = 0.8 at somewhat lower values of Hart- 
mann number than for K = 0-4 or 0.25 provided the Hartmann number is based 
on gap width rather than on cylinder radius. Thus, the absence of oscillatory 
modes for K = 0.8 is merely a result of the definition and range of values chosen 
for the Hartmann number in this work. 
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3. Asymptotic theory 
3.1. Stability equations for I RrI -+ co 

It was shown in part 1 that an asymptotic form of the stability equations could 
be derived for IBrI +co.t For oscillatory modes, the equations can be put in the 
form 

(3.1) 

{(0’2-/3’2+D’-ia’)(D’2-/3’2) +/3’2&’} W i  
+/3’2T’{1 --ax (A’, 0 )  +A’e-~}(D’2-/3’2) W ;  = 0, 

{(0’2-/3’2+D’-ia‘)(Df2-/3‘2)+/3’2&’} Wi-e-vW; = 0, 

where 7 = lr-rsl lRrl/rs, D’ = d/dq, 

For outward radial flow 

T’ = !l!J{%B’(A’)}, A’ = (V,/Vm)--l, 
(A’ 2 - 0-5)  

-1/(4A‘) (A’ < -0-5) 
For inward radial flow, 

T’ = TJR:, A’ = 1 - (VJE); 

rs, V,  are the radius and tangential velocity of the suction cylinder and V, is the 
tangential velocity at  the outer edge of the suction boundary layer. For rotating 
cylinder flow, V, is the tangential velocity of the injection cylinder extrapolated 
to the suction cylinder as a free vortex; i.e. V, = KrJr,, where ri, are the radius 
and tangential velocity of the injection cylinder. We have defined A‘ so that for 
outward radial flow A’ < 0 for all cases of interest (i.e. for all cases where Ray- 
leigh’s criterion predicts instability), while for inward radial flow A’ > 0. 

The boundary conditions at the suction wall are 

W‘ 1 -  - O‘W; = D‘W; = (O‘2-/3‘2) W i  = 0 at 7 = 0; (3.5) 

and far from the wall, 
W; and Wb+O as ?,I+“. 

3.2. Results for JRrJ +co 
Figures 11-1 3 present the critical Taylor number, wave-number and frequency 
for the I RrI + co theory as a function of Q‘ for A’ = - 1 and A‘ = + 1, correspond- 
ing to a non-rotating outer cylinder with outward and inward radial flow, re- 
spectively. For very small &‘, the critical modes are stationary and the Taylor 

t As emphasized in part 1, the limit lRrl + co cannot be taken too literally since we 
have assumed at the outset that P,IR,I is small. Since P,,, < 10“ for most fluids mid the 
aeymptotic theory will be shown to be a fair approximation for lRrl 2 15, there should be 
a wide range of lRrl for which this theory gives useful results. 
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FIGURE 11. Critical Taylor number versus Hartmann number for IRrl + 03. (a)  A' = + 1.0, 

read TI on ordinate; (6) A' = - 1.0, read T, on ordinate. 

Q' 
FIGURE 12. Critical wave-number versua Hartmann number for lR,l + co. (a)  A' = + 1.0; 

(6) A' = -1.0. 
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number and wave-number approach constant values. For very large Q’, the 
frequency approaches a constant, the Taylor number is proportional to Q‘, and 
the wave-number is proportional to &I-*. This behaviour is entirely consistent 
with the earlier work on hydromagnetic stability between non-permeable cylin- 
ders by Chandrasekhar (1961) and, for the oscillatory mode case, by the present 
authors (1967b). One notable difference between the results for A’ = - 1 and 
A’ = + 1 is that the value of Q’ required to produce oscillatory critical modes 
differs in the two cases by well over an order of magnitude. The difference is 
again believed to result from the difference in the shape of the tangential velocity 
profiles. 

3.0 

2-0 

Q’ 

( b )  A’ = -1.0. 
FIGURE 13. Critical frequency versus Hartmann number for lRIl + co. (a) A’ = + 1.0; 

The I R,I +co results have also been plotted in figures 2 to 9 for comparison 
with the finite IR,I results. The Taylor number and wave-number obtained from 
the asymptotic calculations are in reasonably good agreement with the finite 
]R,I results for values of lR,l greater than about 15, although the final approach 
of the two sets of results is rather slow. The agreement in the critical frequency is 
somewhat poorer. In  figure 10, the asymptotic frequency curve is not shown 
since the critical modes are oscillatory only at  very low values of the radial 
Reynolds number where the asymptotic theory cannot be expected to  apply. 

3.3. IR,I +co and &‘-too 
Chandrasekhar (1961) has shown that it is also possible to make use of the 
asymptotic behaviour with respect to Q‘ illustrated in figures 11-13 to simplify 
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the stability equations further. Following Chandrasekhar (1961), equations (3.1) 
become 

{(D2+D‘-ia‘)Dr2+Qwj W;+Tw(l -max(A’, o)+h‘e-]D’2W‘ - 0 
((D’2+D’-ia’)D’2+&m} W;-e-qW; = 0, 

- ,] (3.7) 

where QL = /3’2Q’, TL = /3l2T‘ and we have taken the limit as &‘+a or /3‘+ 0. 
The boundary conditions become 

W; = D’W; = D’W; = D’2W; = 0 at 7 = 0, (3.8) 

W;,W;+O as ~ + a .  (3.9) 

We have solved equations (3.7) for several values of A’. The resulting asymptotic 
forms are given in table 1 and are consistent with figures 11-13. The value of the 
critical frequency for A’ = 1-0 is seen to be much less than the other frequencies 

A’ Wave -number Taylor number Frequency 
- 1.0 p’ N 1-23 Q’-g T,/R: N 167.27 Q’ a‘ N 2.49 
- 0.5 p’ - 1.37 Q‘-* Ta/R: N 149.07 Q’ a‘ N 2.51 

0.0 p’ N 1.53 Q’-g (T,  or T,)/R: N 133.98 Q’ a‘ N 2.53 
0.5 p’ - 1.83 Q‘-h T J q  N 220.91 Q‘ a‘ - 2.52 
1.0 p’ N 5.14 Q’-g TJR: N 522.15 Q’ a’ N 1.47 

TABLE 1. Asymptotic results for both I R,I and &’ large 

given in the table. In fact, the critical frequency is decreasing very rapidly as 
A‘ approaches 1.0 and actually goes to zero at  a value of A’ slightly greater than 
1.0. (Values of /A’! > 1 correspond to counter-rotating cylinders.) It is known 
definitely that at  A’ = 1.06 the critical mode remains stationary even in the limit 
as Q‘ -+ 00. Thus, the very high value of Q‘ required to produce oscillatory modes 
for A‘ = 1.0, which is shown in figure 13 and was noted earlier, seems to be related 
to the fact that A’ = 1.0 is very close to a case for which oscillatory modes do not 
occur at  all. 

4. Conclusions 
When lRrl is finite and the outer cylinder is stationary, oscillatory modes of 

instability occur for sufficiently large values of the Hartmann number. They 
lower the critical Taylor number and must be considered to obtain the correct 
stability criterion. With a constant Hartmann number, the distortions in the 
shape of the primary tangential velocity profile produced by small amounts of 
outward radial flow seem to encourage the formation of oscillatory modes, while 
inward radial flow seems to inhibit the oscillatory modes. For both inward and 
outward radial flow, however, as lRTl becomes very large the disturbance be- 
comes confined to a thin boundary layer on the suction cylinder, and the Hart- 
mann number based on the boundary-layer thickness is eventually reduced to a 
point where a transition back to stationary critical modes occurs. 
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In the limiting case of IR,I +=a with a stationary outer cylinder, the critical 
modes are stationary when Q', the Hartmann number based on boundary-layer 
thickness, is small and oscillatory when Q' is large. The behaviour of the 
critical parameters at  very large values of Q' is qualitatively consistent with 
the earlier results for flow between nonpermeable perfectly conducting cylinders. 

In the limiting case where both IR,I and Q' are very large, oscillatory critical 
modes are found for all cases of co-rotating cylinders for both inward and out- 
ward radial flow. For inward radial flow and counter-rotating cylinders, how- 
ever, there is a range of cylinder rotation rates for which oscillatory critical 
modes do not occur. 
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one of us (T.S.C.) was visiting the Department of Applied Mathematics and 
Theoretical Physics, University of Cambridge. 
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